182 research outputs found

    Orchestrating Service Migration for Low Power MEC-Enabled IoT Devices

    Full text link
    Multi-Access Edge Computing (MEC) is a key enabling technology for Fifth Generation (5G) mobile networks. MEC facilitates distributed cloud computing capabilities and information technology service environment for applications and services at the edges of mobile networks. This architectural modification serves to reduce congestion, latency, and improve the performance of such edge colocated applications and devices. In this paper, we demonstrate how reactive service migration can be orchestrated for low-power MEC-enabled Internet of Things (IoT) devices. Here, we use open-source Kubernetes as container orchestration system. Our demo is based on traditional client-server system from user equipment (UE) over Long Term Evolution (LTE) to the MEC server. As the use case scenario, we post-process live video received over web real-time communication (WebRTC). Next, we integrate orchestration by Kubernetes with S1 handovers, demonstrating MEC-based software defined network (SDN). Now, edge applications may reactively follow the UE within the radio access network (RAN), expediting low-latency. The collected data is used to analyze the benefits of the low-power MEC-enabled IoT device scheme, in which end-to-end (E2E) latency and power requirements of the UE are improved. We further discuss the challenges of implementing such schemes and future research directions therein

    P2P Group Management Systems: A Conceptual Analysis

    Get PDF
    Peer-to-Peer (P2P) networks are becoming eminent platforms for both distributed computing and interpersonal communication. Their role in contemporary multimedia content delivery and communication systems is strong, as witnessed by many popular applications and services. Groups in P2P systems can originate from the relations between humans, or they can be defined with purely technical criteria such as proximity. In this article, we present a conceptual analysis of P2P group management systems. We illustrate how groups are formed using different P2P system architectures, and analyze the advantages and disadvantages of using each P2P system architecture for implementing P2P group management. The evaluation criteria in the analysis are performance, robustness, fairness, suitability for battery-powered devices, scalability, and security. The outcome of the analysis facilitates the selection of an appropriate P2P system architecture for implementing P2P group management in both further research and prototype development

    A Robust Algorithm for the Membership Management of Super-peer Overlay

    Get PDF
    Abstract. Peer-to-Peer technologies have been widely applied for multimedia applications. The super-peer based approach provides an efficient way to run applications by exploring nodes' heterogeneity. In P2P live video streaming, even though the number of stable nodes is small, they have significant impact on the performance of the network. Thus, we present a super-peer-based overlay design, where stable nodes are assigned as super-peers that organize client nodes. A gossip-based super-peer selection algorithm (GSPS) is proposed to identify the stable nodes to be chosen as super-peers and to manage the client nodes (namely the membership management). The basic idea of the GSPS is: first, a set of super-peer candidates for a node is built based on the gossip, then the role of this node is identified and the corresponding operations are executed. Simulation results show that the GSPS is efficient in managing the super-peer overlay and robust to the failure of super-peers. Keywords: Peer-to-Peer, super-peer, gossip, robustness. Introduction The peer-to-peer (P2P) paradigm provides an effective approach to construct largescale systems with high robustness, mainly due to their inherent decentralization and redundant structures In these research studies, Random walk and Graph theory are utilized for the construction of the overlay. For the management of the overlay, the diameter, and the degree are two important qualities to consider. The super-peer-based overlay (such as Gnutell

    How DoS attacks can be mounted on Network Slice Broker and can they be mitigated using blockchain?

    Get PDF
    The 2021 32nd Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC 2021),Virtual Event, 13-16 September 2021Several recent works talk about the potential use of network slice brokering mechanism to facilitate the resource allocation of network slicing in next generation networks. This involves network tenants on the one hand and resource/infrastructure providers on the other hand. However, the potential downside of deploying Network Slice Broker (NSB) is that it can be victimized by DoS (Denial of Service) attack. Thus, the aim of this work is three fold. First, to present the possible ways in which DoS/DDoS attacks can be mounted on NSB and their adverse effects. Second, to propose and implement initial blockchain-based solution named as Security Service Blockchain (SSB) to prevent DoS attacks on NSB. Third, to enumerate the challenges and future research directions to effectively utilize blockchain for mitigating DoS/DDoS attacks on NSB. To evaluate the performance the proposed SSB framework is implemented using Hyperledger Fabric. The results manifest that the latency impact of the legitimate slice creation over scaled up malicious traffic remains minimal with the use of SSB framework. The integration of SSB with NSB results in gaining several fold reduction in latency under DoS attack scenario.European Commission Horizon 20206Genesis Flagship5GEA

    PAuthKey: A Pervasive Authentication Protocol and Key Establishment Scheme for Wireless Sensor Networks in Distributed IoT Applications

    Full text link
    Wireless sensor Networks (WSNs) deployed in distributed Internet of Things (IoT) applications should be integrated into the Internet. According to the distributed architecture, sensor nodes measure data, process, exchange information, and perform collaboratively with other sensor nodes and end-users, which can be internal or external to the network. In order to maintain the trustworthy connectivity and the accessibility of distributed IoT, it is important to establish secure links for end-to-end communication with a strong pervasive authentication mechanism. However, due to the resource constraints and heterogeneous characteristics of the devices, traditional authentication and key management schemes are not effective for such applications. This paper proposes a pervasive lightweight authentication and keying mechanism for WSNs in distributed IoT applications, in which the sensor nodes can establish secured links with peer sensor nodes and end-users. The established authentication scheme PAuthKey is based on implicit certificates and it provides application level end-to-end security. A comprehensive description for the scenario based behavior of the protocol is presented. With the performance evaluation and the security analysis, it is justified that the proposed scheme is viable to deploy in the resource constrained WSNs

    Lightweight and Secure Session-Key Establishment Scheme in Smart Home Environments

    Get PDF
    corecore